A -OPERATOR ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS

By

SHINSUKE YOROZU *Department of Mathematics, College of Liberal Arts, Kanazawa University, Kanazawa, 920Japan*

ABSTRACT

We give a generalization of the result obtained by C. Currás-Bosch. We consider the A_{ν} -operator associated to a transverse Killing field ν on a complete foliated Riemannian manifold (M, \mathcal{F}, g) . Under a certain assumption, we prove that, for each $x \in M$, $(A_x)_x$ belongs to the Lie algebra of the linear holonomy group $\Psi_{\bar{v}}(x)$. A special case of our result, the version of the foliation by points, implies the results given by B. Kostant (compact case) and C. Currás-Bosch (non-compact case).

1. Introduction

The following Kostant's result is well-known: If X is a Killing vector field on a compact Riemannian manifold M, then, for each $x \in M$, (A_x) , belongs to the Lie algebra of the linear holonomy group $\Psi(x)$ ([6], p. 247).

The purpose of this note is that of extending the above result to the case of complete foliated Riemannian manifold. Our result is

THEOREM. Let (M, \mathcal{F}, g) *be a connected, orientable, complete, foliated Riemannian manifold with a minimal foliation ~ and a bundle-like metric g with respect to* \mathcal{F} *. Let v be a transverse Killing field with finite global norm. Then, for each* $x \in M$, $(A_x)_x$ belongs to the Lie algebra of the linear holonomy group $\Psi_{\overline{y}}(x)$, where ∇ is the transversal Riemannian connection of \mathcal{F} .

If $\mathcal F$ is the foliation by points, then ν is a Killing vector field on M with finite global norm and $\Psi_{\overline{y}}(x) = \Psi(x)$. Thus we have the result given by C. Currás-Bosch [2]. If M is compact and $\mathcal F$ is the foliation by points, then we have the above Kostant's result.

Received March 27, 1986 and in revised form June 7, 1986

350 S. YOROZU lsr. J. Math.

REMARK. Let (M, \mathcal{F}, g) be as in Theorem. If the Ricci operator of $\mathcal F$ is non-positive everywhere and negative for at least one point of M , then every transverse Killing field with finite global norm is trivial ([12]).

We shall be in C^* -category and deal only with connected and orientable manifolds (without boundary). The author wishes to express his thanks to the referee for kind suggestions.

2. Tansverse Killing fields

Let (M, \mathcal{F}, g) be a complete foliated Riemannian manifold of dimension $p + q$ with a foliation $\mathcal F$ of codimension q and a bundle-like metric g in the sense of B. L. Reinhart [7]. The foliation $\mathcal F$ is given by an integrable subbundle E of the tangent bundle *TM* over *M*. The quotient bundle $Q := TM/E$ is called the normal bundle of \mathcal{F} . Let π : $TM \rightarrow Q$ be the natural projection. The bundle-like metric g defines a map $\sigma: Q \to TM$ with $\pi \circ \sigma =$ identity and induces a metric g_0 in Q ([3], [4]). There exist local orthonormal adapted frames $\{E_i, E_\alpha\}$ to $\mathscr F$ ([8], [11]). Here and subsequently, we use the following convention on the range of indices: $1 \leq A, B \leq p + q, 1 \leq i, j \leq p$, and $p + 1 \leq \alpha, \beta \leq p + q$.

Let ∇ be the *transversal Riemannian connection* in Q ([3], [4]). We have that $i(X)R_{\overline{y}}=0$ for all $X \in \Gamma(E)$, where $i(X)$ denotes the interior product with respect to X, and $R_{\overline{v}}$ denotes the curvature of ∇ ([3]).

Let $V(\mathcal{F})$ be the space of all vector fields X on M satisfying $[X, Z] \in \Gamma(E)$ for all $Z \in \Gamma(E)$. We define $\theta(X) : \Gamma(Q) \to \Gamma(Q)$ for $X \in V(\mathcal{F})$ by $\theta(X)v = \pi([X, Y])$ for all $v \in \Gamma(Q)$ and $Y \in \Gamma(TM)$ with $\pi(Y) = v$. Then we have

DEFINITION 1 ([4]). If $X \in V(\mathcal{F})$ satisfies $\theta(X)g_0 = 0$, then $\pi(X) \in \Gamma(Q)$ is called a *transverse Killing field* of \mathcal{F} .

DEFINITION 2 ([4]). The operator $A_{\nu} : \Gamma(Q) \to \Gamma(Q)$ for $\nu \in \Gamma(Q)$ is defined by $A_{\nu}(\mu) := -\nabla_Y \nu$, where $Y \in \Gamma(TM)$ with $\pi(Y) = \mu$.

PROPOSITION 3 ([4]). *If* $\nu = \pi(X)$ *is a transverse Killing field of* \mathcal{F} *, then* (i) $g_O(A_\nu(\mu), \tau) + g_O(\mu, A_\nu(\tau)) = 0$ for $\mu, \tau \in \Gamma(Q)$,

(ii) $\nabla_Y A_\nu = R_\nabla(\nu,\mu)$ *for* $Y \in \Gamma(TM)$ with $\pi(Y) = \mu$.

Let $\Gamma_0(Q)$ be the space of all sections of Q with compact support in M. We define the global scalar product $\langle \cdot, \cdot \rangle$ by $\langle v, \mu \rangle := \int_M g_0(v, \mu) dV$ for all $\nu, \mu \in \Gamma_0(Q)$, where *dV* denotes the volume element of *M*. Let $L_2(M, Q)$ be the completion of $\Gamma_0(Q)$ with respect to «, ». We set $||v||^2 := \langle v, v \rangle$.

Vol. 56, 1986 A_{ν} -OPERATOR 351

DEFINITION 4 ([10], [12]). A transverse field ν has *finite global norm* if $\nu \in L_2(M, Q) \cap \Gamma(Q)$.

Let x_0 be a point of M and fix it. For each $x \in M$, we denote by $\rho(x)$ the geodesic distance from x_0 to x. For any $r > 0$, we set $B(r) := \{x \in M \mid \rho(x) \le r\}.$ Then there exists a family $\{w_i\}_{i\geq0}$ of cut-off functions on M ([1], [5], [10], [12]). We note that, for $\nu \in L_2(M, Q) \cap \Gamma(Q)$, $w_r \nu$ lies in $\Gamma_0(Q)$ and $w_r \nu \rightarrow \nu$ ($r \rightarrow \infty$) in the strong sense.

The exterior derivative d has the decomposition: $d = d' + d'' + d'''$ ([5], [9]). Then we have $dw_r = d'w_r + d''w_r$ and $d''w_r = \sum_{\alpha=p+1}^{p+q} E_{\alpha}(w_r) E_{\alpha}^*$, where $\{E_A^*\}$ denotes the dual frame to $\{E_A\}$. For $\nu \in \Gamma(Q)$, we may regard $d''w$, $\otimes \nu$ as a linear map: $\Gamma(Q) \to \Gamma(Q)$ with $d''w_r \otimes \nu(\mu) := d''w_r(\sigma(\mu)) \cdot \nu$.

LEMMA 5 ([1], [5], [10], [12]). *For any* $\nu \in \Gamma(Q)$, *there exists a positive constant C* independent of r such that*

$$
||d''w_r \otimes \nu||_{B(2r)}^2 \leq C^*r^{-2}||\nu||_{B(2r)}^2
$$

where

$$
\|\cdot\|^2_{B(2r)}=\alpha\cdot,\cdot\mathcal{B}_{B(2r)}=\int_{B(2r)}g_O(\cdot,\cdot\,)dV.
$$

3. Proof of Theorem

Let (M, \mathcal{F}, g) be as in Theorem. We remark that a leaf L of $\mathcal F$ is minimal if $\pi(\Sigma_{i=1}^p \nabla_E^M E_i)_x = 0$ at each $x \in L$, where ∇^M denotes the Levi-Civita connection with respect to g, and $\mathcal F$ is *minimal* if all the leaves of $\mathcal F$ are minimal ([3], [4], [8], [12]). We define an operator div_v: $\Gamma(Q) \rightarrow \mathbf{R}$ by

$$
\operatorname{div}_{\nabla} \nu := \sum_{\alpha=p+1}^{p+q} g_{Q}(\nabla_{E_{\alpha}} \nu, \pi(E_{\alpha}))
$$

for all $\nu \in \Gamma(Q)$. This is independent of the choice of the local adapted frames. Let $I: \Gamma(Q) \to \Gamma(Q)$ be the identity map. We first have the following proposition.

PROPOSITION 6. *For* $\nu \in \Gamma(Q)$,

$$
\int_M w_r^2 \operatorname{div}_{\nabla} \nu dV + \alpha 2 d'' w_r \otimes \nu, w_r I_{\partial B(2r)} = 0.
$$

PROOF. We have

$$
\begin{split}\n\text{div}(\sigma(w_r^2 \nu)) &= \text{div}(w_r^2 \sigma(\nu)) \\
&= \sum_{\alpha=p+1}^{p+q} g(2w_r E_\alpha(w_r) \sigma(\nu), E_\alpha) + \sum_{i=1}^p g(w_r^2 \nabla_{E_i}^M \sigma(\nu), E_i) \\
&+ \sum_{\alpha=p+1}^{p+q} g(w_r^2 \nabla_{E_\alpha}^M \sigma(\nu), E_\alpha) \\
&= \sum_{\alpha=p+1}^{p+q} g(2w_r d'' w_r(E_\alpha) \sigma(\nu), E_\alpha) - \sum_{i=1}^p g(w_r^2 \sigma(\nu), \nabla_{E_i}^M E_i) \\
&+ \sum_{\alpha=p+1}^{p+q} g_0(w_r^2 \pi(\nabla_{E_\alpha}^M \sigma(\nu)), \pi(E_\alpha)) \\
&= \sum_{\alpha=p+1}^{p+q} g_0(2w_r d'' w_r(E_\alpha) \pi(\sigma(\nu)), \pi(E_\alpha)) \\
&+ \sum_{\alpha=p+1}^{p+q} g_0(w_r^2 \nabla_{E_\alpha} \nu, \pi(E_\alpha)) \qquad \text{(by the minimality of } \mathcal{F}) \\
&= \sum_{\alpha=p+1}^{p+q} g_0(2d'' w_r(E_\alpha) \nu, w_r \pi(E_\alpha)) + w_r^2 \text{div}_\nabla \nu.\n\end{split}
$$

As $w_i² \sigma(\nu)$ has compact support contained in $B(2r)$, by Green's theorem, we complete the proof of Proposition 6. •

COROLLARY 7. *If M in Theorem is compact, then*

$$
\int_M \operatorname{div}_{\nabla} \nu dV = 0
$$

for $\nu \in \Gamma(Q)$.

COROLLARY 8. If M is as in Theorem and ν is a transverse Killing field, then it *holds that* $div_{\nabla} \nu = 0$.

Now, let $p: L(Q) \rightarrow M$ be the linear frame bundle of Q with the structure group $O(q)$. Let $\Psi_{\mathbf{v}}(x)$ be the *linear holonomy group* (with reference point x) of the connection form on $L(Q)$ associated to ∇ ([6, Chapters II and III]). We denote by $\mathfrak{G}_{\mathbf{v}}(x)$ the Lie algebra of the linear holonomy group $\Psi_{\mathbf{v}}(x)$ for each $x \in M$. Let $\mathscr{E}(x)$ be the Lie algebra of skew-symmetric endomorphisms of Q_x , and let $\mathfrak{G}_{\overline{v}}(x)$ be the orthogonal complement of $\mathfrak{G}_{\overline{v}}(x)$ in $\mathscr{E}(x)$ with respect to the inner product induced from g_0 . For a transverse Killing field ν , we set

$$
A_{\nu}=S_{\nu}+B_{\nu}
$$

where $(S_v)_x \in \mathfrak{G}_{\nu}(x)$ and $(B_v)_x \in \mathfrak{G}_{\nu}(x)$ for each $x \in M$. In the same way as for

Vol. 56, 1986 A_r -OPERATOR 353

Lemma in [6, p. 247], we have that $\nabla_x B_y = 0$ for all $X \in \Gamma(TM)$. If we prove $B_{\nu} = 0$ for any transverse Killing field ν with finite global norm, then we have the proof of theorem. We show that $B_{\nu} = 0$ in the same way as [2].

Let v be a transverse Killing field with finite global norm. Since B_{ν} is skew-symmetric and div_v $B_{\nu}(\nu) = -\langle B_{\nu}, B_{\nu} \rangle$, we have

$$
\int_M w_r^2 \, \text{div}_{\nabla} B_\nu(\nu) dV = - \| w_r B_\nu \|_{B(2r)}^2,
$$

and

$$
\langle 2d''w, \otimes B_{\nu}(\nu), w, I \rangle_{B(2r)} = -\langle 2d''w, \otimes \nu, w, B_{\nu} \rangle_{B(2r)}.
$$

By Proposition 6, we have

 $\|w_r B_\nu\|_{B(2r)}^2 + \alpha 2d''w_r \otimes v, w_r B_\nu \otimes_{B(2r)}= 0.$

By Schwarz inequality and Lemma 5, we have

$$
|\alpha d''w_r \otimes \nu, w_r B_{\nu} \gg_{B(2r)} |\leq ||2d''w_r \otimes \nu||_{B(2r)} ||w_r B_{\nu}||_{B(2r)}\leq 2^{-1} ||w_r B_{\nu}||_{B(2r)}^2 + 2C^*r^{-2} ||\nu||_{B(2r)}^2.
$$

Thus we have

$$
||w_rB_\nu||_{B(2r)}^2 \leq 4C^*r^{-2}||\nu||_{B(2r)}^2.
$$

Since ν has finite global norm, letting $r \rightarrow \infty$, we have

 $\lim_{r\to\infty} ||w_rB_{\nu}||^2_{B(2r)} \leqq 0.$

Therefore, we have that $B_v = 0$.

By examples in $[2]$ and $[8]$, we can construct examples of M and transverse Killing fields v with infinite global norms on M such that A_v does not belong to the Lie algebra of the linear holonomy group $\Psi_{\nu}(x)$ for each $x \in M$.

REFERENCES

1. A. Andreotti and E. Vesentini, *Carteman estimates for the Laplace-Bettrami equation on complex manifolds,* Inst. Hautes Etudes Sci. Publ. Math. 25 (1965), 313-362.

2. C. Curras-Bosch, Ax-operator *on complete Riemannian manifolds,* Israel J. Math. 53 (1986), 315-320.

3. F. W. Kamber and Ph. Tondeur, *Harmonic [oliations,* Lecture Notes in Math. 949, Springer-Verlag, Berlin, Heidelberg and New York, 1982, pp. 87-121.

4. F. W. Kamber and Ph. Tondeur, *Infinitesimal automorphisms and second variation of the energy for harmonic foliations,* Tohoku Math. J. 34 (1982), 525-538.

5. H. Kitahara, *Nonexistence of nontrivial* \Box^{ν} -harmonic 1-forms on a complete foliated rieman*nian manifold,* Trans. Amer. Math. Soc. 262 (1980), 429-435.

6. S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry,* Vol. I, Interscience, New York, 1963.

7. B. L. Reinhart, *Foliated manifolds with bundle-like metrics,* Ann. of Math. 69 (1959), 119-132.

8. R. Takagi and S. Yorozu, *Minimal foliations on Lie groups,* Tohoku Math. J. 36 (1984), 541-554.

9. I. Vaisman, *Cohomology and Differentiable Forms,* Marcel Dekker, New York, 1973.

10. S. Yorozu, *Killing vector fields on complete Riemannian manifolds*, Proc. Amer. Math. Soc. 84 (1982), 115-120.

11. S. Yorozu, *Behavior of geodesics in foliated manifolds with bundle-like metrics,* J. Math. Soc. Japan 35 (1983), 251-272.

12. S. Yorozu, *The non-existence of Killing fields,* Tohoku Math. J. 36 (1984), 99-105.