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ABSTRACT

We give a generalization of the result obtained by C. Currds-Bosch. We
consider the A,-operator associated to a transverse Killing field » on a
complete foliated Riemannian manifold (M, &, g). Under a certain assumption,
we prove that, for each x € M, (A.), belongs to the Lie algebra of the linear
holonomy group Wv(x). A special case of our result, the version of the foliation
by points, implies the results given by B. Kostant (compact case) and
C. Curras-Bosch (non-compact case).

1. Introduction

The following Kostant’s result is well-known: If X is a Killing vector field on a
compact Riemannian manifold M, then, for each x € M, (Ax). belongs to the
Lie algebra of the linear holonomy group ¥(x) ([6], p. 247).

The purpose of this note is that of extending the above result to the case of
complete foliated Riemannian manifold. Our result is

THEOREM. Let (M, %,g) be a connected, orientable, complete, foliated
Riemannian manifold with a minimal foliation ¥ and a bundle-like metric g with
respect to %. Let v be a transverse Killing field with finite global norm. Then, for
each x € M, (A.). belongs to the Lie algebra of the linear holonomy group W(x),
where V is the transversal Riemannian connection of %.

If & is the foliation by points, then v is a Killing vector fieid on M with finite
global norm and We(x) ="V¥(x). Thus we have the result given by C. Currds-
Bosch [2]. If M is compact and % is the foliation by points, then we have the
above Kostant’s result.
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REMARK. Let (M, %, g) be as in Theorem. If the Ricci operator of % is
non-positive everywhere and negative for at least one point of M, then every
transverse Killing field with finite global norm is trivial ({12]).

We shall be in C”-category and deal only with connected and orientable
manifolds (without boundary). The author wishes to express his thanks to the
referee for kind suggestions.

2. Tansverse Killing fields

Let (M, &, g) be a complete foliated Riemannian manifold of dimension p + ¢
with a foliation &% of codimension ¢ and a bundle-like metric g in the sense of
B. L. Reinhart [7]. The foliation % is given by an integrable subbundle E of the
tangent bundle TM over M. The quotient bundle Q:= TM/E is called the
normal bundle of #. Let w: TM — Q be the natural projection. The bundle-like
metric g defines a map o: Q — TM with 7 o o = identity and induces a metric
8 in Q ([3], [4]). There exist local orthonormal adapted frames {E,, E.} to %
([8], {11]). Here and subsequently, we use the following convention on the range
of indices: 1= A, B=p+g, l=ijsp and p+tl=q,B=p+gq

Let V be the transversal Riemannian connection in Q ([3], [4]). We have that
I(X)Ry =0 for all X €I'(E), where i(X) denotes the interior product with
respect to X, and Ry denotes the curvature of V ([3]).

Let V(%) be the space of all vector fields X on M satisfying [ X, Z] € I'(E) for
all Zel(E). We define 6(X):T'(Q)—I(Q) for X&V(¥) by
O(X)v:=7([X, Y]) for all v €T(Q) and Y EI(TM) with 7(Y) = v. Then we
have

DerFiNiTION 1 ([4]). If X € V(%) satisfies 8(X)go =0, then w(X)ET(OQ) is
called a transverse Killing field of %.

DEFINITION 2 ([4]).  The operator A,: ['(Q)—T(Q) for v ET(Q) is defined
by A, (p):= —Vyp, where Y ET(TM) with 7 (Y) = p.

ProposITION 3 ([4]). If v = w(X) is a transverse Killing field of %, then

(i) 8o(A. (1), 7)+ go (1, A (1)) =0 for u, 7 €T(Q),
(i) VvA, = Ro(v, 1) for Y €ET(TM) with 7(Y) = p.

Let I'y(Q) be the space of all sections of Q with compact support in M. We
define the global scalar product « , » by «y, u»:=[pugo(v,u)dV for all
v, 0 €T(Q), where dV denotes the volume element of M. Let L.(M, Q) be the
completion of I'y(Q) with respect to « , ». We set [[v[[:=«w, v».
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DeriNiTION 4 ([10], [12]). A transverse field v has finite global norm if
v € Ly(M, 0)NT(Q).

Let x, be a point of M and fix it. For each x € M, we denote by p(x) the
geodesic distance from x, to x. For any r >0, we set B(r):={x €M I p(x)<r}
Then there exists a family {w,},., of cut-off functions on M ([1], [5], [10}], [12]).
We note that, for v € L,(M, Q)N T'(Q), w,v lies in I'y(Q) and w,v — v (r - =) in
the strong sense.

The exterior derivative d has the decomposition: d =d’'+d"+d" ([5], [9]).
Then we have dw, =d'w, +d"w, and d"w, =229, E,(w,)E%, where {E}}

denotes the dual frame to {E.}. For v €T(Q), we may regard d"w, @ v as a
linear map:T(Q)—T(Q) with d"w, & v{p):=d"w{c(pn})) v

LemMa 5 ([1], [5), {10], [12]). For any v €I'(Q), there exists a positive constant
C* independent of r such that

|d"w, Qv

2 ) =2
B(z,)g C r

2
VilBr)

where

I

2 — —
B(Zr)_(('»'))B(Zr)’—J go("')dV-
B(2r)

3. Proof of Theorem

Let (M, %, g) be as in Theorem. We remark that a leaf L of % is minimal if
m(2f., VEE), =0 at each x € L, where V" denotes the Levi-Civita connection
with respect to g, and % is minimal if all the leaves of # are minimal ([3], [4],
{8], [12]). We define an operator divy: I'(Q)—R by

ptq

dive v:= z 8o (Ve v, m(EL))

a=p+

for all » € T(Q). This is independent of the choice of the local adapted frames.
Let I: I'(Q)—T'(Q} be the identity map. We first have the following proposi-
tion.

ProprosITION 6. For v €T(Q),
J. widive dV + 2d"w, @ v, wI» e, = 0.
M

Proor. We have
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div(o(wiv))=div(wio(v))

= Zpl gR2w.E, (w.)ao(v), El,)+'; g(WV¥o(v), E;)

p+q

+ 21 gwiViio(v),E.)

a=p+

pPtq

=2 g(2wrd"W'(Ea)U(V),Ea)—i=zl g(wio(v),VEE,)

a=p+l1

p+q

+ Ep‘ go(Wim(VEo(v)), m(E.))

p+q

= > goQ@wd"w, (E.)m(a(v)), w(E,))

a=p+l

p+q

+ D go(wiVew, w(E,))  (by the minimality of %)

a=p+1

ptq

= 3 g Qd"w.(E.)v, wa(E.))+ wldive v.

a=p+l

As w7a(v) has compact support contained in B(2r), by Green’s theorem, we
complete the proof of Proposition 6. n

CorOLLARY 7. If M in Theorem is compact, then

J divg vdV =0
M

for v €T(Q).

CoroLLARY 8. If Mis as in Theorem and v is a transverse Killing field, then it
holds that divev =0,

Now, let p: L(Q)— M be the linear frame bundle of Q with the structure
group O(q). Let Wy(x) be the linear holonomy group (with reference point x) of
the connection form on L(Q) associated to V ([6, Chapters II and III]). We
denote by Go(x) the Lie algebra of the linear holonomy group We(x) for each
x € M. Let €(x) be the Lie algebra of skew-symmetric endomorphisms of Q,,
and let &5(x) be the orthogonal complement of By(x) in &(x) with respect to
the inner product induced from go. For a transverse Killing field », we set

AV:SV+BV

where (S,), € &v(x) and (B,), € &5(x) for each x € M. In the same way as for
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Lemma in [6, p. 247], we have that V4B, =0 for all X €'(TM). If we prove
B, =0 for any transverse Killing field » with finite global norm, then we have the
proof of theorem. We show that B, =0 in the same way as [2].

Let v be a transverse Killing field with finite global norm. Since B, is
skew-symmetric and dive B, (v) = —(B,, B,), we have

2
B(r)s

f w? dive B, (v)dV = — | w.B,
M

and
«2d"w, @ B, (v), wI»gey= —«2d"w, Q v, w.B,» 5.
By Proposition 6, we have

lw.B.

"
pent «2d"w, Q@ v, w.B,» e, = 0.

By Schwarz inequality and Lemma 5, we have

I«d”w, ® v, w,B, P B(2r)

= ||2d”w, v Hs(z.)

w,B,

B(2r)

=27"|w,B.

Ben T 2C*r | vifen.
Thus we have

” w.B, ”if(zn = 4C*’_2” v ”%3(2»

Since v has finite global norm, letting r— o, we have

l'ILE ” w.B, lzs(zr) =0.

Therefore, we have that B, =0.

By examples in {2] and [8], we can construct examples of M and transverse
Killing fields » with infinite global norms on M such that A, does not belong to
the Lie algebra of the linear holonomy group W(x) for each x € M.
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